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Synopsis 

A leasbsquares fitting procedure is developed for application to determine the parameters 
of the power law for nonlinear creep and recovery behavior of polymeric materials. The 
nonlinear power law, developed by Schapery from thermodynamic principles, is linearized, 
and an iterative approach is used to determine the desired parameters. The iteration is stopped 
after the standard deviation of the calculated points with respect to the fitted points reaches 
a minimum value. The purpose of this method is to avoid the inherent ambiguities present 
in the more familiar graphical fitting procedure. In order to study the sensitivity and limi- 
tations of an experimental approach for determining the viscoelastic parameters, sets of ar- 
tificial experimental data points were generated for use as a control. These points were obtained 
by varying the theoretical functional values with normallydistributed random numbers within 
a preset error band. 

INTRODUCTION 
Except for very small stresses or strains, most polymers show a consid- 

erable degree of nonlinear viscoelastic behavior. It is, therefore, desirable 
to extend the characterization of these materials into the nonlinear vis- 
coelastic range. A frequently used formulation of nonlinear viscoelastic 
behavior and analysis of polymeric and composite materials has been thor- 
oughly discussed among others by S~hapery.l-~ Other descriptions of the 
nonlinear viscoelastic behavior have been suggested. A recent overview on 
this subject was given by Chri~tensen.~ 

In this paper we consider a numerical approach for the determination of 
the parameters for the nonlinear Schapery formulations5 from experimen- 
tal data and to obtain an estimate of the errors one may expect. As originally 
suggested by Schapery, the parameters are determined by a graphical meth- 
od which requires simultaneous horizontal and vertical shifts of an exper- 
imental curve to give a best fit with one of a series of master curves. Since 
we found this procedure rather time consuming and quite difficult to re- 
produce, we developed a numerical method which is rapid, considerably 
more accurate and less ambiguous than the graphical method, and easily 
adaptable to modern data gathering systems via microprocessors. The meth- 
od involves a least-squares fit of experimental data to the nonlinear power- 
law equations of the Schapery formulation for creep and recovery strain 
by varying the parameters of the model. 

A major objective of this investigation is to illustrate how precisely our 
numerical procedure can determine the parameters of the fit as a function 
of the error spread of the experimental data. In order to do this, we have 
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artificially generated experimental points by varying the true functional 
values obtained for the creep and recovery equation with a Gaussian dis- 
tribution to represent experimental errors with a chosen error. We do this, 
despite the fact that we are presently using the method successfully in an 
experimental program to study the nonlinear viscoelastic behavior of ex- 
poxy resins, in order not to deal with the rather inflexible and, possibly, 
unknown pecularities of real material and equipment behavior. We thus 
have the freedom to change the material parameters and experimental 
errors at will. 

The method proposed here of using a least-squares fit to determine the 
parameters of a function to describe a set of data is not new, but it does 
not seem to be well known in the present application. Hence, we felt it 
worthwhile to discuss it in some detail in the context of the Schapery 
formulation, with particular emphasis on results that pertain to establish- 
ing the most appropriate form for various ranges of the parameters. Fun- 
damentally, we assume that we are given a set of data, 6, at the points xi, 
which we want to fit by a function f ( x i ,  a). The quantities aj, which for 
convenience we denote by the vector a, are the parameters to be determined 
from the data. The method consists of minimizing the sum S: 

where the sum is over the data points. There are several techniques avail- 
able to minimize s. What we do here is to linearize the function f(x,a) in 
the parameters aj by expanding f i n  a Taylor series and by keeping the 
first two terms. The problem is thus reduced to the familiar linear regres- 
sion, which, in the present context, provides first-order correction terms to 
initial estimates for the parameters which must be given. This procedure 
is continued until the standard deviation of the functional values from the 
experimental values is minimized. 

A characteristic feature of nonlinear analysis is a sensitivity in the de- 
termination of the parameters of the fit to their initial values, which must 
be specified, in the sense that values which are sufficiently far from the 
true values will lead to absurd results. This situation can be determined 
quickly from an inspection of the results. If this happens, new initial values 
need to be tried. We mention this merely to warn the reader of this pos- 
sibility. 

Among various other formulations for describing the nonlinear visco- 
elastic behavior of polymeric  material^,^^^^^ the approach taken by Schapery5 
appeared particularly attractive to us for the following reasons: The ex- 
periments to be carried out are simple (uniaxial) creep or relaxation mea- 
surements; the theory was developed from thermodynamical principles.'S2 
The parameters go, g,, g,, and a, in the Schapery formulation are not simple 
curve-fitting parameters; but they reflect third and higher order dependence 
of the Gibb's free energy on the applied stress, and a, arrives from similar 
high-order effects in entropy production and free energy. (Similarly, the 
parameters &, hl, and hz are higher-order strain effects in the Helmholtz 
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free energy, and a, arises from strong strain influences in both entropy 
production and free energy.) It should be noted that the Schapery expres- 
sions reduce to those of the well-known linear viscoelastic equations when 
the Schapery parameters go, gl, gz, and a, (or he, hl, h, and a,) approach 
1, or to another widely used nonlinear theory, the modified superposition 
principle (MSP) (when the parameters go = a, = 1X8 

In the following, a shah review of the Schapery formulation is given, 
and the numerical approach is described with enough detail to allow the 
experimentalist to set up a computer program to meet his specific needs. 
Finally, a number of sample runs were made to give the reader some feeling 
of the magnitude of the uncertainty he may expect in the determination 
of the parameters for certain material parameter ratios or ranges. We 
included several parameter curvefitting examples, because the uncertain- 
ties can be generally reduced if one parameter is already known and one 
has to solve only for two or one instead of three. The paper is not intended 
to discuss procedures on how to do creep and recovery measurements but 
rather to guide the experimentalist in the data analysis. Numerical data 
manipulation does not replace the experimental skill and physical intuition. 

DISCUSSION 

The Schapery Formulation 
The time-dependent nonlinear strain and stress behavior of polymeric 

materials as derived by Schapery is given in eqs. (1) and (2): 

E(t) = go D(0)a + gl [ AD(W - Y’) * dr 
dT 

where D(0) and AD(*) are initial and transient components of the creep 
compliance, W is the reduced time defined by 

dt’ 
= 4 a, [cr(t’)] 

and 

and the material properties go, gl, g2, and a, are functions of stress; 

o( t )  = heEee + hl [ A E  ( p - p‘) * dr 
dr 

where E is the strain ( A W ,  E,, and AE(p) are the equilibrium and transient 
relaxation moduli and the reduced time, p, defined as 
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and 

and the material properties he, h,, b, and a, are functions of strain. 
For constant stress (creep) or constant strain (relaxation) eqs. (1) and (2) 

become expressions (3) and (4) for the nonlinear creep and relaxation be- 
havior: 

The creep function AD(t) could for instance be expressed by an  exponential 
series: 

where Or, D,, and T, are positive constants; 7, is usually called retardation 
time. The term D,t is the so-called steady flow component (which can be 
neglected except for uncrosslinked amorphous polymers above their glass- 
transition temperature). Equation (5) is not only an expression for the fa- 
miliar Kelvin model, consisting of springs and dashpots, but it is also ob- 
tained from molecular models and from the STT. 

A particular simple expression for AD (t), however, is 

It was pointed out by Schapery5 and Williamsg that eq. (6) can be derived 
from eq. (5) if a continuous retardation time spectrum is used instead of a 
fmite series of retardation times. 

Thus, one obtains a rather simple expression for the nonlinear creep 
strain, 

and for the stress-relaxation, 

where n and m are generally less than 0.5. 
Since gl and gz appear as a product in the second term of eq. (7) [h, and 

& in eq. (811, it is not possible to obtain both parameters from single creep 
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or relaxation experiments. Shapery suggested to perform creep and sub- 
sequent recovery measurements to determine all nonlinear parameters 
(go, gl, g2, and a,) and multistep relaxation experiments to determine he, 
hl, &, and a,.l0 

The equation for the recovery strain is given by 

where e,(t) is the recovery strain, Ae, the net strain just before the time t, 
of unloading, and A the reduced time ( t -  t,)/ t,. 

On performing an experiment at small stresses (in the linear range) where 
go = g, = g, = a, = 1, one obtains the constants D(0) and Cl. Now go, gl, 
g2, and a, can be obtained.1° 

Schapery described a graphical method for determining the exponent n 
from the recovery curves where the experimental log A curves are simul- 
taneously shifted vertically and horizontally to match best with one of a 
series of master curves (with different n's). 

We found this procedure very time-consuming and very difficult to get 
reproducible results, even from the same set of creep strain data. This and 
the recent availability of automatic data gathering via digital micropro- 
cessors prompted us to develop a numerical approach for a rapid creep data 
analysis. Since the stress-relaxation has a similar form and can be readily 
adapted, we will discuss here only the equations for the creep compliance 
and the equations for the recovery curve. 

Numerical Approach 

Substituting Do = goD(0), e0 = Dou, Dl = Cglg2/a: , Ael = Dla  and A = 
Ae,/gl into eqs. (7) and (9) and dividing by the applied stress, we can rewrite 
eqs. (7) and (9) in terms of 

Thus, eq. (10) is a three-parameter equation with time t as the independent 
and the creep strain, ~ ( t ) ,  as the dependent variables to be measured, and 
the parameters, eo, he1, and the exponent n are to be obtained from the 
experimental points. (This three-parameter creep curve fit will be called 
3PC.) Similarly, in eq. (11) A is the independent and c,(t)  the dependent 
variable with A, a,, and n to be determined. (This curve fit will be called 
3PR.) One can see that n can be obtained from either expression. 

In order to obtain a best fit for all the experimental points to the given 
equations, the parameters are adjusted such that the standard deviation of 
all points becomes a minimum. 
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Equations (10) and (11) were linearized by expansion into a Taylor series 
and truncation after the first derivative to give 

4 t )  = e0 + Aeltno + Ae:6nt "oln t (12) 

where n,, and Ae: are initial input values for the following iteration, and 
Sn = n-n,, and 

where A = Ae,/gl, B = ASn, C = ASa, Sa = (a, - %I. 

iation with respect to the a's, 
After substitution for e0 = a, bel = az, and Ae:6n=a3 in eq. (12) and var- 

N '  

[al + aptlo i- a3tfoln ti - = 0 
i= 1 

we obtain a set of linear simultaneous equations: 

where 

tpo (In tiY, %1 = a12, q2 = a23 
i= 1 

N is the number of measured creep points €(ti) and ti are the respective 
times. n, is chosen as the initial value for the exponent and Actl is the 
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netstrain after 1 h (which was chosen as the time unit). Obviously, any time 
unit at which A q  can be measured reliably will suffice. 

The introduction of Aef  as an initial value was chosen in order to separate 
the product of unknowns AqSn. Solving these equations for al, a2, a3 results 
in new values of n, and A€;  which are now entered in the loop. This iteration 
is continued until the standard deviation including all points reaches a 
minimum. 

A similar variation with respect to the unknown parameters is carried 
out with eq. (13): 

where f i  is the first bracket term of eq. (131, f i  the second bracket term, 
and f3 the third bracket term. Let f i ,  fi, f -t fk and A,B,C, -, Ak, where 
K = 1,2,3; then we obtain again a set of simultaneous linear equations. 

where I = 1,2,3. Defining 

then we obtain 

which is solved for the Ak, giving new values for A, n,,, and a,,. The iteration 
is continued until the standard deviation with all points included obtains 
a minimum value. 

Thus, the exponent n can be obtained from either the 3PC or the 3PR 
method. In the case where one method has a lower error probability for 
determining n, it might further reduce the error probability for determining 
the rest of the parameters by reducing the second curve fit to be performed 
as a two-parameter curve fit. Also, from the shape of the creep curves, it 
may appear that he1, the net strain (transient strain) after 1 h, can be 
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obtained with high accuracy; thus again, one obtains a two-parameter curve 
fit with Acl as constant input. This curve fit will be called 2PC1. The cor- 
responding two-parameter creep curve fit, where the initial strain c0 is 
entered as constant will be called 2PCO. The two-parameter recovery curve 
fit, where n (obtained from the creep experiment) is set constant, will be 
called 2PRn. Or vice versa, the two-parameter curve fit where n was de- 
termined from 3PR curve fit is called 2PCn. For the derivations of the two- 
parameter curve fits the same Taylor expansion eqs. (12) and (13) are used 
where the variations are carried out for the unknown parameters. 

Test Functions and Simulated Experiments 

The thermodynamic theory gives only a qualitative meaning to the pa- 
rameters go, g,, g2, a,, and n. For obvious reasons they cannot be predicted 
by theory but must be determined from experiment. The graphical method 
of vertical and horizontal curve shifting makes an error analysis for the 
various parameters very difficult if not impossible, while the numerical 
method allows one to obtain reasonable error estimates. 

If we can exclude all instrument sources of errors (such as misalignments, 
large variabilities or nonlinearities and temperature fluctuations) which 
are not related to the curve fitting method itself, the errors in the param- 
eters to be determined will then depend on the data spread in the collected 
strain readings, on the number of points collected, on the form of the creep 
or recovery curve (i.e., on the magnitude of the parameters themselves and 
their relation to each other), and on the specific curve fitting method. The 
finite loading time, during which time creep and relaxation will occur, 
makes it sometimes difficult to obtain a reasonable estimate of the initial 
compliance or relaxation modulus. Schapery analyzed this problemlo and 
concluded that if the collected data are taken after a time which is larger 
than five times the time necessary to complete sample loading, the error 
in the creep compliance or relaxation modulus will be less than 5%. 

Instead of using actual experimental creep and recovery curves which do 
not show a direct error measurement, we used theoretical test functions of 
the form of equations (10) and (11) with reasonable, assumed parameters 
e0, A E ~ ,  and n or A, a,, and n, respectively. As experimental curves, we took 
samples of N points which were artificially randomized to give a normal 
distribution around the theoretical values using the algorithm of 

X = (-2 In Rl)1/2 cos(27rR2) (14) 

where R, and R2 are random numbers from 0 to 1 and X are numbers 
which are normally distributed from - 1 to + 1. (For the desired data spread 
in f% this number is multiplied by pl100.) 

Thus, artificial experimental points were produced through which curves 
were fit using the above curve-fitting techniques. This allows one to change 
the parameters and their ratio to one another at will, as well as to change 
the number of points and the width of their normal distribution and the 
time after which data collection starts. The iteration is continued until the 
standard deviation of the “experimental” points to the fitted curve becomes 
a minimum. The parameters of this curve are then taken as best fit. 
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500: 

0 

It should be noted that each set of randomized, normally distributed 
experimental points gives parameters that differ from each other and from 
the theoretical value. In order to obtain a measure for these errors, 10 
individual runs were made fm- each set of parameters such that for every 
run a new set of random numbers was used. The mean error of these 10 
runs and its standard deviation is reported. 

- 
- 
- 

- - 

- 

' t ' t ' t " l ' ' (  

Relations of Polymers and Composites 

In evaluating viscoelastic parameters in composites, great care should be 
taken, particularly if the experimental loading process is not extremely 
short (which in many cases it is not). For many composite constructions, 
the ratio of eo/Ael of initial strain to net strain after 1 unit of time (say 1 
h) is much larger than that for the neat resin. This could mean that the 
creep curve of a composite can mimic a considerably lower n value than 
one might find for the pure resin. An example is shown in Figure 1, curve 
1, and Figure 2. By graphically superposing these two curves, they seem to 
be indistinguishable (except for extremely short times). 

These are two theoretical curves: 1 of Figure 1 has e0 = 8000, Ael = 8000, 
and n = 0.01, i.e., eo/Ael = 1; the curve of Figure 2 has e0 = 15,000, Acl 
= 1000, and n = 0.1 Thus, a very large error may be expected if such a 
curve was analyzed without further knowledge. (This example should only 
caution the experimentalist that mindless automation and uncritical data 
analysis may easily lead to erroneous conclusions.) 

In Figure 1 we also have included curves 2, 3, and 4, which all have the 
same eO/Ael ratio but different exponents n, which are 0.1, 0.4, and 1, re- 
spectively. We have done this for two reasons: first it provides a better 
feeling for the functional form of eq. (10); second, and more importantly, it 
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shows immediately that if we have no further knowledge of the material, 
we may, even with good measurements, get large errors for small n's. On 
the other hand, if we know that this polymer is in the glassy state, we 
would obviously not expect a creep curve of a shape of curve 1, which would 
mean that the viscous deformation is almost finished by the time the loading 
is complete (i.e., the glassy viscosity is low which is contrary to any obser- 
vation and a resulting c0 = 8O00,  ALE^ = 8000, and n = 0.01 would not make 
sense). 

At this point it may be useful to remember the meaning of n. Williamss 
has shown that n is the log-log slope of the retardation (or relaxation) curve 
through the transition region between glassy and rubbery behavior. This 
statement has two consequences: First, n should be independent of tem- 
perature since a change in reference temperature of the log-log master 
curve for the creep compliance (or relaxation modulus) leads only to a 
horizontal shift but not a change in slope; second, n (being a material 
constant) should carry over unchanged to composites (at least for angle ply 
composites with fibers that do not creep, as is the case with carbon fibers). 
This is obviously not true for Kevlar composites since Kelvar also shows a 
creep behavior. The reason that n should be the same for angle ply com- 
posites with creepfree fibers as for the neat resin arises from microme- 
chanical considerations. The theoretical details for that cannot be discussed 
here. However, on a qualitative basis one might argue as follows. The only 
constituent in such a composite that can creep is the matrix. (The fact that 
in a loaded composite the resin between the fibers is in a nonuniform 
multiaxial stress-strain field is not important.) The local stresses can be 
represented by octahedral shear stress-strain components5 and the ana- 
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lytical approach is normally a finite element analysis as used, for instance, 
by Schaffer and Adam@ or Crossmann et al.13 The effective resin stress 
will remain constant during a creep experiment and, therefore, the ratio 
of the net strain, Ae(t), at some time, t, and the net strain after one unit 
of time, he1, should remain the same for both the matrix and the composite, 
since Ae(t) = A q  tn. For this reason, it may be more useful to determine 
the exponent n from the neat resin and the other parameters e0, Ael, A, 
and a, from the two-parameter curve fits 2PCn and 2PRn. 

Unidirectional composites in the zero direction, crossply composites, and 
multiangle ply composites may not have the same exponent. This can also 
be understood if one considered a unidirectional composite loaded in the 
fiber direction. Usually the fibers carry the main load. After the initial load 
application, the fiber is strained to its equilibrium. The resin is stressed 
not only longitudinally but through the Poisson effect also transversely. 
The resin does not creep longitudinally since it is restrained by the fibers, 
but it will relax and transfer the relaxed stresses (a small portion of the 
total stress in the composite) to the fibers which will be slightly more loaded 
and strained. In this case, it is the stress-relaxation of the resin that governs 
the creep of the composite. (For nonlinear viscoelasticity there is no direct 
conversion from relaxation modulus to creep compliance.) A similar ar- 
gument holds for crossply composites and for multiangle composites. 

However, if the loads applied to the composite are not very high (for 
instance under storage), the stresses in the resin (as calculated via micro- 
mechanics and lamination theory) may be well within the linear elastic 
range, and creep compliance and stress relaxation modulus are related by 
the well-known convolution integral, 

where D(T) is the linear creep compliance and E is the linear relaxation 
modulus. Thus, the log-log slope (n) of D is the same as that of E (with a 
negative sign). Again, the 2PCn or 2PRn curve fit can be used if n was 
determined from resin creep or relaxation experiments. Measuring the com- 
posite and the resin creep exponent independently may even yield addi- 
tional information on various composite nonlinearities which are of a 
different nature than the nonlinearities resulting from the matrix itself 
(for instance, microcrack formation or fiber breakage, all of which are ir- 
reversible phenomena and can mimic a “nonlinear” viscoelastic behavior 
of the composite, based, however, on a different mechanism). 

The above remarks should be a reminder that at present we do not want 
to give the impression that an automation of the experiments (without a 
certain understanding of the experimenter on the subject and on the nature 
of the material) will lead to unambiguous and reliable results. 

In the following section, we shall investigate what errors we may expect 
as a result of the number of points entered into the analysis, the effect of 
spread (width) of the measured data, and how the magnitude of the various 
parameters effect each other. 
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Expected Errors in the Experimental Determination 
of the Nonlinear Viscoelastic Parameters 

From eqs. (10) and (11) and the definitions of the following 
parameters:€, E go D(0) u, Ael E Cglg2/ag , A = Aea/g1, and from the fact 
that, for experiments at low stresses (linear region), go = gl = g2 = a, = 
1, one can obtain the stress dependent parameters go # gl # g2 # a, # 1 
from a series of single uniaxial creep and recovery experiments at different 
loading levels. For the sake of clarity, we shall use here only the parameters 
c0, Ael, a*, A, and n. 

We shall consider examples with the three- and two-parameter curve 
fitting methods 3PC, 3PR, 2PRn, 2PC0, 2PC1, and 2PCn. 

Each entry in Tables I-VI is the average of 10 individual test runs, each 
with a new set of random numbers. In addition to the average errors 

A\ '  E R R O R  

0 1  
10 100 1000 

NUMBER OF POINTS. IN) 

Fig. 3. Average errors for eo, hel, and n as a function of the number of data points ( N )  for 
the 3PC curve fit. Theoretical values: co = 8000, Acl = 1000, n = 0.4; data spread f0.5%. 
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(xlErr//n), their standard deviation is also given. Under the columns “The- 
oretical values” are listed the parameters that were chosen to represent a 
theoretical reference function from which a number of points were taken 
and normally distributed to give a set of “experimental” points with a preset 
data spread, indicated in the column, spread (+%lo). Since in some cases the 
final result was significantly dependent on the choice of initial trial values 
of the parameters for the iteration, they are listed in the columns Initial 
Inputs. The data points were assumed to start after 60 s and spaced to fall 
within 1 h to simulate a typical creep experiment. 

For reference purposes, all entries are numbered consecutively. For all 
runs except runs 2 and 3, a total of 31 data points were used (run 2 had 
73 and 3 had 126 points). For the two-parameter curve fits, a preset error 
was given to the third parameter which was assumed to be known within 
that range. For obvious reasons, we neither can, nor do we intend, to give 
a complete description of the total error space governed by all three pa- 
rameters and their relations to one another. The sample runs were chosen 
to show trends and to provide a better feel for the errors that may be 
expected from actual creep and recovery experiments. Once the program 
is set up, it is easy to investigate these specific cases of interest which are 
not covered here. 

Effect of the Number of Experimental Points on the 3PC Curve Fit 

If no artificial error was introduced in the functional values of the selected 
points of the test function, the parameters were obtained exactly (within 
the roundoff error of the computer). 

D 

Fig. 4. Average errors in E,,, A E ~ ,  and n as a function of the ratio %/AE,  for the 3PC curve 
fit with n = 0.4. Data spread +0.5%; N = 31. 
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- A\' E R R O R  - (9'1 
* 

By introducing normally distributed errors of +0.5% bandwidth for the 
data points around the true functional value for the 3PC curve fit, the 
average errors for each parameter were different; however, they decreased 
approximately to 1/2 when the number of experimental points was in- 
creased threefold (see Table I, runs 1-3, and Fig. 3). 

Effect of the Ratio e,JAe, on the 3PC Curve Fit 

As we have indicated in the section Relations of Polymers and Composites, 
with a high ratio of cO/Aq and in the absence of reliable measurements at 
very short times, one may expect large errors for n, as can be indeed seen 
from the results of Table I (runs 1, and 4-12) and Figure 4. 

NORMALLY DISTRIBUTED D A T A  SPREAD I2 % I  

Fig. 5. Average errors in G, Ae,, and n as a function of the width of the normally distributed 
data for the 3PC curve fit. Theoretical values: q, = 8000, he, = 1000, n = 0.4, N = 31. 
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Fig. 6. Average errors in co, he,, and n as a function of n for the 3PC curve fit. Theoretical 
values: eo = 8000, Ael = 8000, N = 31; data spread f0.5%. 

Figure 5, it is obvious that a data bandwidth of f l% or higher gives 
unacceptable errors in n and Ael. (Either .the number of points or the ac- 
curacy of the data must be significantly increased to assure that the pa- 
rameters obtained are useful.) Of course, if the ratio of eO/Ael is smaller, 
the error for n and Acl is also considerably smaller (see run 18). 

Effect of the Exponent of the 3PC Curve Fit 

Figure 6 and Table I (runs 19-23) show that the error in determining n 
with the 3PC method increases drastically as n becomes smaller than 0.2, 
even for an eO/Ael ratio as small as 1. It should be noted here that curve 
fits to the experimental points (using these high error n values) still look 
excellent on the computer graphics printouts. Obtaining a good curve fit 
with experimental points in this case does not mean that the parameters 
obtained are equally good. The 3PC curve fitting method is insensitive to 
the initial input values for ACT or a, as can be seen in runs 23-25. (This 
is not the case for the 3PR curve fit.) 
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Fig. 7. Average errors in Ael/gl, a,, and n as a function of a, for the 3PR curve fit. 
Theoretical values: Ael/gl = 8000, n = 0.3, N = 31; data spread +0.5%. 

Effect of Change in a, on the 3PR Curve Fit 

From Figure 7 and Table I1 (runs 26-29), one can conclude that as the 
horizontal shift factor a, becomes very small, the error in a, increases 
slowly, while the errors in n and in the “vertical shift factor” A = Ac,/gl 
remain within acceptable bonds. 

Effect of the Exponent n on the 3PR Curve Fit 

From Figure 8 and Table I1 (runs 30-34), one can see that for small 
exponents n < 0.2 the 3PR method is better for determining n but for large 
exponents n >0.2 the 3PC method is superior. Also, it does not seem to 
matter much whether Aq,/g, is large or small (compare run 30 with 35 and 
run 33 with 36). However, as will be seen in the next paragraph, fine tuning 
of the trial input values for n,, may be required for best results. 

Effect of the Trial Input Value of n On the 3PR Curve Fit 

In contrast to the 3PC method, the 3PR curve fitting method is very 
sensitive to the initial trial input values for the exponent n,, (see Fig. 9 and 
Table 11, runs 37-42 and run 32). As a matter of fact, there is usually an 
overflow error if the difference between the true value of n and the initial 
input value n,, is larger than 0.1. An error recovery and fine tuning algo- 
rithm is advisable here. This is fairly independent of whether Ac,/gl is large 
or small (compare with runs 41 and 42). 
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.1 2 .3 .4 .5 

EXPONENT In1 

Fig. 8. Average errors in Ae,/gl, a,, and n as a function of n for the 3 PR 
Theoretical values: Ael/gl = 250, a, = 1, N = 31; data spread: +0.5%. 

curve fit. 

Effect of Data Bandwidth on the 3PR Curve Fit 

Comparing Figure 10 (Table 11, runs 43-48) with Figure 5, it seems that 
the error in n is less sensitive to the data bandwidth for the 3PR method 
than for the 3PC method. However, one still has to keep the remarks of 
the previous paragraph in mind. 

Effect of the Exponent n on the 2PRn Curve Fit 

From Table I11 (runs 49-53) and Figure 11 one can see that if n were 
known exactly for the 2PRn curve fit, one would obtain very small errors 
in a* and Ae,/g,, fairly independent on n itself. If the error of the assumed 
exponent n increases above 8%, so does the error of a, and Aea/g,, and the 
2PRn may no longer be superior to the 3PR method (see Fig. 12 and Table 
111, runs 54-57). On the other hand, if n> 0.22, the error in n decreases 
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-100, h 

1 0  
0 1  0 2  0 3  0 4  0 5  INITIAL n 

INPUT 

Fig. 9. Average errow in Arllg,, a,, and n a8 a function of the initial input value of n when 
the theoretical value of n = 0.3. Thwr@tied values: Ae,/gl = 250, a, = 1, N = 31; data 
spread: 50.5%. 

rapidly if the 3PC method is used. This means that if n > 0.22, a combination 
of 3PC and 2PRn may give better results than the combination of 3PC and 
3PR where one still has to make a compromise with the two different n 
values that are most likely obtained. 

Results with the 2x0 Curve Fitting Method 

In using the 3PC method, we have mentioned that as the ratio eo/Ael 
becomes larger than 15, the errors in n and hel become unacceptably large. 
On the other hand, for large eo/Acl it seems quite easy to make a good guess 
for e0 from the creep curve, even by visual inspection. One might ask wheth- 
er an improvement could be made with a two-parameter curve fit, where 
eo is given with a small error. The answer can be seen immediately from 
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0 1  
.25 .50 .?5 1 0  1 2 5  1 5 0  

NORMALLY DISTRIBUTED DATA SPREAD I= % I  

Fig. 10. Average errors in Ahcl/gl, a, and n as a function of the width of the normally 
distributed data for the 3PR curve fit. Theoretical values: Aellgl = 8000, a, = 1, n = 0.4, 
N =  31. 

Table IV. Even very small errors in E,, lead to very large errors in he1, and 
even larger errors in n. The 2PCO method is not recommended under any 
circumstances. 

Results with the 2PCl Curve Fitting Method 

In cases where we have both a large ratio of eO/Ael and a small exponent 
n < 0.2, we will expect a large error in Ael and n if we use the 3PC method. 
However, for large eo/Ae, it becomes rather easy to estimate Ael (the tran- 
sient creep strain after 1 h). Figure 13 (Table V, Runs 66-70) shows a 
particularly unpleasant case where eO/Ael = 32 and n = 0.15. Under such 
circumstances one may find the 2PC1 method superior to the 3PC method. 
Comparing runs 66 and 71, one finds no great change in error with changing 
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4225 

Fig. 11. Average errors in Acl/gl and a, as a function of nfor the 2 PRn curve fit. Theoretical 
values: Acl/gl = 8o00, a, = 1, N = 31; data spread f0.5%. 

n. For a preset error in hel of 10% (which may be quite reasonable), and 
for a ratio of E ~ I A ~ ,  = 32, Figure 14 and Table V (runs 69, and 72 through 
74) show the change in error as a function of n. Again, for small n the 2PC1 
method is preferrable. 

From Figure 15 and Table V (runs 75-84), one can see that the error of 
n obtained from the 2PC1 method is quite insensitive to the ratio of elIAel, 
and the error of eo becomes very small as this ratio increases. 

Results with the 2PCn Curve Fitting Method 

This method is applicable for determining eo and Ael if n is known already 
from previous experiments with sufficient accuracy. I t  might be especially 
useful for angle ply composites where the ratio eOIAel is usually large and 
where the resin exponent has been determined on the neat resin. (As was 
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4 8 12 16 20 24 

PRESET E R R O R  FOR n I % I  

Fig. 12. Average errors in Acl/gl and a, as a function of the preset error in n for the 2PRn 
curve fit. Theoretical values: Ael/gl = 8000, a, = 1, n = 0.4, N = 31; data spread +0.5%. 

mentioned before, micromechanical arguments predict the same exponent 
for angle ply composites as for the neat resin.) 

From Table VI one can see that the errors in E,, and Ae1 remain low, even 
for a small exponent and for high eO/Ael ratios. Even if the n used has an 
error of lo%, the increase in the error of e0 and Ael is not dramatic (compare 
run 93 with 97 and run 95 with 96). Comparing run 12 of Table I with run 
96, one can see that the 2PCn method becomes rapidly more attractive 
where the ratio of eo/Ael becomes large and where n becomes small. 

General Appearance of Computer Graphics 
for the Curve Fitting Procedures 

It  was observed that even when there were considerable errors in the 
parameters extracted from these curve-fitting procedures, the resulting 
curves seemed to fit very nicely through the “experimental points,” and, 
also, they were generally difficult to resolve from the theoretical test curves. 
This could mean that, under certain circumstances, the physical meaning 
of a change in parameter becomes less significant and is washed out, or, 



TA
B

LE
 I

V
 

R
es

ul
ts

 o
f 

Te
st

 R
un

s 
U

si
ng

 th
e 

2P
C

O
 C

ur
ve

 F
itt

in
g 

M
et

ho
d 

~~
 

Th
eo

re
tic

al
 v

al
ue

 
In

iti
al

 in
pu

t 
A

ve
ra

ge
 e

rr
or

 (%
) s

ta
nd

ar
d 

de
vi

at
io

n 
Se

t e
rr

or
 

Te
st

 
Sp

re
ad

 
no

. 
6
 

A
€,

 
n 

(I
t%
) 

Lo
 

no
 

A
L

l 
SD

 
n 

SD
 

fo
r 

L,
, 

58
 

8O
oo

 
59

 
8O

oo
 

60
 

80
00

 
61

 
80

00
 

62
 

80
00

 
63

 
80

00
 

64
 

80
00

 
65

 
80

00
 

25
0 

0.
4 

25
0 

0.
15

 
25

0 
0.

15
 

25
0 

0.
2 

25
0 

0.
3 

25
0 

0.
15

 
25

0 
0.

3 
25

0 
0.

3 

0.
5 

0.
5 

0.
5 

0.
5 

0.
5 

0.
5 

0.
5 

0.
5 

80
10

 
80

10
 

80
10

 
80

10
 

80
10

 
81

00
 

80
80

 
81

60
 

24
0 

24
0 

50
0 

24
0 

24
0 

50
0 

24
0 

24
0 

0.
5 

0.
5 

0.
5 

0.
5 

0.
5 

0.
5 

0.
5 

0.
5 

9.
16

 
6.

28
 

6.
07

 
3.

68
 

3.
99

 
39

.7
0 

29
.8

5 
57

.6
8 

5.
69

 
4.

75
 

3.
82

 
3.

82
 

4.
95

 
4.

73
 

4.
88

 
4.

47
 

11
.4

7 
19

.7
8 

15
.9

7 
23

.8
7 

21
.0

6 
99

.3
8 

84
.4

6 
56

1.
91

 

6.
78

 
0.

12
5 

16
.7

4 
0.

12
5 

9.
13

 
0.

12
5 

13
.9

4 
0.

12
5 

12
.2

3 
0.

12
5 

59
.5

9 
1.

25
 

35
.2

5 
2.

0 
19

0.
40

 
4.

0 



4228 AUGL AND LAND 

0 1  

PRESET E R R O R  OF LI1 lo& 

Fig. 13. Average errors in c,, and n as a function of the preset error in hel for the 2 x 1  
curve tit. Theoretical values: %/he, = 32, n = 0.15, N = 31; data spread +0.5%. 

that the method itself, which uses only a limited number of points, cannot 
resolve the underlying physics. Sometimes improved experiments may help 
to resolve the physics better, such as very rapid loading conditions to obtain 
reliable data at less than 1 s, or more accurate strain measurements with 
less noise. Sometimes additional knowledge about the material may resolve 
the question of whether the material parameters should be better repre- 
sented by a curve such as 1 in Figure 1, or by parameters as indicated in 
Figure 2. In spite of the fact that these curves look almost identical for 
times larger than a few seconds after load application, the physics is actually 
quite different. 

CONCLUSIONS 
1. The 3PC curve fitting method is recommended for analyzing creep 

strains for polymeric materials or composites where 0.05 < eO/Ael < 15 
and where the creep exponent n > 0.22. The average errors in the deter- 
mined parameters may be reduced to one-half if the number of experimental 
points is increased threefold. (With a strain data bandwidth of 1%, the 
errors in eo, Ael, and n are then within 6, 10, and 15%, respectively.) 
2. The 3PR curve fitting method is superior for determining the exponent 
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100 c A V  E R R O R  

0 1 1  I I I I I 
1 .2 3 4 5 

EXPONENT, In1 

Fig. 14. Average errors in 6 and n as a function of n for the 2 x 1  curve fit. Theoretical 
values: $/A€, = 32, preset error for A€, = lo%, N = 31; data spread f0.5%. 

n only if n < 0.22. The results of the 3PR iteration procedure are quite 
sensitive to the initial trial input value for n. The iteration may even diverge 
if = n +O.l  (an error recovery and a fine tuning algorithm must be 
incorporated). The iteration of the 3PR method may also diverge when the 
trial input value of a, deviates more than a factor of 10 from the true value. 
The magnitude of a, also affects the mean errors of all parameters. As a, 
goes from 10 to 0.01 (for n = 0.3), the mean errors of Ael/gl and n remain 
less than 10% while the error of a, increases from 4 to more than 30%; 
however, at such low values of a, this error is of minor significance. That 
the mean errors for all parameters increase with any of the curve fitting 
methods when the data bandwidth increases is obvious. 

3. The 2PRn curve-fitting method is superior to the 3PR curve-fitting 
method when n > 0.22 and eo/Ael < 10 because n can then be obtained 
more accurately from the 3PC procedure and put into the 2PRn method as 
a known constant. 
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A V  E R R O R  

0 L o  WITH n = 4 

0 l WITH n = .15 

1 ° k  

0 1  1 0  10 100 

L o l A C 1  

Fig. 15. Average Errors of 6 and n as a function of the ratio e0/Ae1 for the 2PC1 curve fit. 
Theoretical values: for both n = 0.4 and 0.15, N = 31, preset error for bel = 10%; data spread: 
+0.5%. 

4. The 2PCO method is inferior under any circumstances and should not 
be used. 

5. The 2PC1 method is superior to the 3PC method when n < 0.2 and 
when Ael can be obtained with an error less than 10% (then n can be 
obtained more accurately from the 3PR method). 

6. The 2PCn method is superior if n is sufficiently well known from 
previous experiments since the resulting errors in E,, and Ael remain low. 
The method is especially suitable for low n and high ratios of eO/Ael, and 
for composites where the resin exponent has been determined indepen- 
dently. 

7. Neither of these curve-fitting methods should be used without careful 
consideration of their shortcomings. Large errors will result if eo/Ael is 
large or if n is small. The question of what constitutes an acceptable error 
must obviously be left to the engineering or scientific requirements. Im- 
provements in the analysis may be possible, for instance, by changing the 
experimental conditions such as carrying out the experiment at different 
temperatures, getting data at shorter times (which requires high loading 
rates), reducing the noise level of the measurements to obtain a smaller 
data bandwidth, including a larger number of points, etc., and, under certain 
conditions, using a combination of curve fitting procedures may be advan- 
tageous. Even if the automation of the data analyses should not be carried 
out mindlessly, we believe that this numerical approach to the nonlinear 
viscoelastic parameter analysis will increase the reliability of the data anal- 
yses and materials characterization in this field. 
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